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TECHNICAL NOTE D-201

METHODS OF PREDICTING LAMINAR HEATING RATES ON HYPERSONIC VEHICLES

By Richard J. Wisniewski

SUMMARY

A summary of some of the simplest and best available laminar heat-
transfer theories for flow in thermodynamic equilibrium is presented.
In some cases the effects of frozen flow are included. FEmphasis is
placed on the proper methods of obtaining heating rates to hypersonic
bodies, wings, and control surfaces. The effects of yaw and the deter-
mination of the inviscid flow field are also considered.

INTRODUCTION

The flight path of many hypersonic vehicles such as global gliders
or reentering satellites is such that maximum heating will occur at very
high altitudes. Since the Reynolds numbers will be quite low, the bound-
ary layer 1s expected to remain laminar for some distance away from the
leading edge. Although maximum heating will occur at high altitudes, the
flow will still be in the continuum regime, and in many instances equi-
librium dissociations will occur. Therefore, the design of high-altitude
hypersonic vehicles will require a knowledge of the best available lami-
nar heat-transfer theories for dissociated flow in thermodynamic
equilibrium.

At present, the engineer desiring to estimate laminar heating rates
must be familiar with many different theories and a great many references.
This report combines many of the theories into one source and outlines
some of the simplest available methods for calculating heating rates for
equilibrium flow. All the theories presented apply to an isothermal wall
only.

SYMBOLS

a sonic velocity

cyi mass fraction of ith component



dhji
J——— L J
z :cl aT

body diameter

diffusion coefficient

thermal diffusion coefficient
see egs. (10)

H/H,
total enthalpy

static enthalpy

average atomic dissociation energy times atomic mass fraction
in external flow

enthalpy per unit mass of ith component
heat evolved in formation of component 1 at o° R per unit mass

perfect-gas enthalpy per unit mass
frozen thermal conductivity

Lewis number, DipEb/E

thermal Lewis number, D?dgp/ﬁ

STV FIRTI

Mach number

molecular weight of undissociated air
Nusselt number

Prandtl number, E/uzb

pressure

heating rate

gas constant
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nose radius

small radius of curvature at stagnation point of a three-
dimensional body

large radius of curvature at stagnation point of a three-
dimensional body

Reynolds number, pwuex/uW

Reynolds number, peuex/pe

cylindrical radius of body

blunt-body sonic coordinate, see fig. Z

Ci/ci,e

temperature

ciicrdwise or longitudinal velocity component

flight velocity

spanwise velocity component

velocity component parallel to shock

longitudinal coordinate

chordwise component normal to leading edge
blunt-body sonic-point cocrdinate, see fig. 2

normal coordinate

ratio of molecular weights, undissociated air to dissociated
angle of attack or root angle of aerodynamic surface
effective flow deflection angle

pressure-gradient parameter

ratio of specific heats

flow deflection angle




see eqs. (3)

i

® T/T,

2] shock angle

A yaw angle

v absolute viscosity

v dynamic viscosity

£ see egs. (3)

o) density

) angular position

Subscripts:

as axisymmetric

aw adiabatic wall

e external flow outside boundary layer

eff effective conditions

w wall or surface value

WO stagnation wall value
differentiation with respect to 1

A gquantity pertaining to yawed body

0 stagnation value behind normal shock

1 flight conditions, or conditions upstream of shock

2 conditions downstream of shock

zD two dimensional

3D

three dimensional

09z -d4
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Superscripts:

a see eq. (25)

n see egs. (3)

* based on reference temperature

TRANSPORT OF HEAT

When the chemical reaction rates through a boundary layer are very
large, the concentration of atoms within the boundary layer will be in
thermochemical equilibrium. The temperature gradieunt through the bound-
ary layer then uniquely determines the concentration gradient, and the
enthalpy-temperature relation depends only on the pressure. Thus, the
flow 1s considered to be in a state of thermodynamic equilibrium.

The local heat-transfer rate to a body surrounded by flow in ther-
modynamic equilibrium is determined by the sum of the heat transferred
by conduction and the heat transferred by diffusion. In reference 1, the
heat transfer to the wall is given by

(X on Z o dcy Tey Jr
q = _C_:'— '5‘}7) + p(hi - hi) <Di -5-5—- + Di 5 '5-3; (l)
v D y=9 \d y=0
Conddggion Diffusion

The first term in equation (1) merely represents the heat that is
conducted because of the temperature gradient normal to the wall. A sec-
ond term, however, must also be added since at high temperatures a con-
centration gradient of atoms exists between the edge of the boundary
layer and the wall. The second term in equation (l) represents the
amount of recombination energy released at the wall due to the diffusion
of atoms through the boundary layer.

By using the dimensionless variables suggested in reference 1,
equation (1) becomes

I‘npw“wueﬂe i e(hi } hg) . Of
- rwee E 2 I i
&y + H_ [(Ll l)sl,n + Lis; 5 (2)

~/2€ Pr -0

e}
[




where

@
1
)
S~
H

s; = esfey J

and the ratio of the atomic diffusion coefficient to the thermal 4iff
sivity is the Lewis number L;, while the ratio of the thermal diffus
to the thermal diffusivity is represented as the thermal Lewis number

LE. For two-dimensional flow n = 0, while for axisymmetric flow

n = 1.0. For the case in which no recombination occurs at the wall (

092-H
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con-

centration gradient vanishes) or for the special case Lj = 1 and the

usual boundary-layer assumption LE = 0, the summation term in equati
(2) venishes. Equation (2) then becomes

_ rlpyiiy Ut
- Tz Br (gn)nzo
If the following are defined,
qxc =
Nu = — P,W - gx Pr
by (hay - by) by (hayw - hy)

Re, = UeX/vy

the heat-transfer rate for the case of zero yaw can be written as

p, M u
M Y v J—‘?— (hay - by)
Pr X

iE VRey
where

2

u

- = e
haw= he + -‘/ﬁ —2—

on

(4)

(5)

(6)

(7)
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and the value of Nu/W/Rew must be obtained from the boundary-layer so-
lutions, while all other parameters needed in equation (7) are determined
from the inviscid flow field and the wall temperature.

STAGNATION FLOW

Lewis Number of Unity

By neglecting thermal diffusion (LE = O) and assuming a Lewls number

equal teo 1.0, the laminar boundary-layer equations for a dissociated gas
at a two-dimensional or axisymmetric stagnation point from reference 2
are written as:

Momentums:
Pe 2)
ann)n + ffTm + B (?; - fTI =0 (8)
Energy:
'qu/§;)n +1gy = O (9)
where

o~
|
©
-
~
©
=
F
O
_J

f = J/Jlfn dn
° \ (10)
£y = ufug
gt Ne
u, df <

and g and 17 are defined by equations (3). The boundary conditions
are

n =0 f=1f =0 g =g, =h/H

N fﬂ -1 g1

(11)

Solution of equations (8) and (9) requires specifying p.fe and 1 as
functions of g plus the proper value of 8.



Fay and Riddell (ref. 2) have numerically solved these equations for
the axisymmetric stagnation point (B = 0.5) and a variety of representa-
tive flight conditions. Numerical solution of these equations for the
two-dimensional case (B = 1.0) and various representative flight condi-
tions has been made by Kemp, Rose, and Detra in reference 1 but has not
been explicitly presented as the two-dimensional stagnation solution.

For the case of stagnation-point flow it can be shown that by using
equations (4) to (7) and replacing ue by

Ue = (ggg)x=0 x (12)

the heat-transfer parameter becomes:

Axisymmetric:

<%>as hE (—_g—n—)n—o G2

Two dimensional:

(—3%)21, i (%)2:2.0 (14)

Plotted in figure 1 are the theoretical values of Nu/w/Rew obtained by
using the flight conditions listed in the table of reference 2. It is
apparent that Nu/-\/ReW can be easlly correlated in terms of the ratio
of pp at the edge of the boundary layer to that at the wall. For
pO“O/pwo“wo equal to 1.0, the solutions of reference 3 have been pre-
sented, and they too correlate well.

For flow at the stagnation point of an axisymmetric blunt body, ref-
erence 2 has shown that when L; = 1.0 and Pr = 0.71 the theoretical
values of Nu/-\/Rew for a real fluid can be approximated by

o \0.40
Nu = 0.67 (—=2- (15)
~/ Rey as Pwokwo

For the case of two-dimensional stagnation-point flow and similar condi-
tions, the results of reference 1 yield

Pt
( u ) = 0.495 (——9_0—> (16)
~/Rey °D Pwotwo

092-8
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In reference 4, Beckwith has compared the real-gas axisymmetric
stagnation-point solution of reference 2 with the perfect-gas solution.
This comparison revealed that the appropriate perfect-gas solution is
one for which the total variation of pp across the boundary layer is
the same as in the real-gas case. Reference 4 then concludes that the
heat transfer at the stagnation point is not sensitive to the effects of
dissociation on the density and specific heat within the boundary layer.

Beckwith further reasoned that the two-dimensional perfect-gas so-
lution could be extended in the same manner. In fact, he found that the
heat-transfer parameter Nu/w/ReW at the stagnation line of a two-
dimensional yawed or unyawed body could be correlated in terms of pu
provided the actual conditions in the external flow at the stagnation
line are used to determine the proper pp ratio.

The results of reference 4 at the stagnation line of a yawed or un-
yawed two-dimensional body can be represented as

0.44
Nu - ~ . [ Poto\ -
= 0.5 (—2 (17)
VRey Jop \pwo“wo)

This equation agrees very well with the real-gas solution (eq. (16)),
thereby completely Jjustifying the extrapolation of reference 4 to the
two-dimensional stagnation line. For the case of a stagnation line on a
yawed two-dimensional body, complete justification is not possible since
no real-gas solutions are available for comparison; however, the extrapo-
lation does appear very reasonable.

Although no real-gas solutions are available for a three-dimensional
stagnation point, a reasonable estimate can be obtained from the results
of' Reshotko in reference 5. These results indicate that the heat-
transfer parameter can be expressed as

1/2 0.44
Nu = 0.5 1+ (35) / <_EQE§L) (18)
~/Rey, 3 R, Pwotwo

where Ry, 1s the smaller principal radius of curvature and R, 1is the
larger principal radius of curvature. For RX/R = 0, equation (18) re-
duces exactly to the two-dimensional expression %eq. (17)). However,
for RX/RZ = 1, equation (18) deviates only slightly from the axisym-
metric case (eq. (15)).
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Lewis Number Different From 1.0

The previous results have been for a boundary layer in thermodynamic
equilibrium with a Lewis number of 1.0 and a Prandtl number of 0.71. If
the Lewis number is not equal to 1.0, then from reference 2 the energy
equation is written as

(16q/FF)y + Ty + [;Z%;E (B; - 1) (L - 1)si,‘,,]n =0 (19)

Pr

Numerical solution of equations (19) and (8) for the axisymmetric
stagnation point and values of Lj from 1 to 2 are presented in ref-
erence 2. The results of reference 2 indicate that the effect of Lewis
number on the heat-transfer parameter can be simply correlated and is
best given by

=

N L

where the dissociation energy per unit mass of air hp is defined as

hp = E Ci,e(-hg) (21)

atoms

The value of hp can be estimated by using appendix A. Although equa-
tion (20) is a stagnation point in an axisymmetric flow, extension to the
stagnation point in a two- or three-dimensional flow would probably be
accurate.

Frozen Flow

Since it is possible for frozen flow to exist (very slow reaction
rates), it is worthwhile to include its effect on the heat-transfer
parameter. At a Lewis number of 1.0, the frozen and equilibrium
boundary-layer equations are identical, and there 1s no effect. For
Lewis numbers other than 1.0 the results of reference 2 indicate that
the effect of Lewis number on the frozen-flow heat transfer can be sim-
ply correlated and is best given by

092-1
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The effect of Prandtl number on the heat-transfer parameter has
been considered in references 2 and 3. The sawme correction can be ap-
plied to the results presented herein and is included in the following
expressions for the heating rates in the next section.

Engineering Calculation of Heat-Transfer Rate in Stagnation Region

Stagnation point of an axisymmetric blunt body (n = 1). - The heat-
transfer rate at the stagnation point of a blunt body for a Lewis number
other than 1.0% and a Prandtl number of 0.71 using equations (7), (12),
(15), (20), and (22) can be written as

qQ = 0'94(Pwoﬂwo v o 1+ (LY - 1) T (B, - h,) (23)

where o = 0.52 for thermodynamic equilibrium and 0.63 for frozen flow.
In order to correct for a Pr other than 0.71, replace the constant
0.94 in equation (23) by 0.76 Pr-0.6,

For axisymmetric bodies which are not too blunt (see below) the
velocity gradient (due/dx)x=o can be obtained [rom modified Newtonian
flow and is expressed as

(due) 1 2(p,o - py) (20)
S —— — — Lo e e e 4:
X= Ry po

For very blunt bodies experimental pressure distributions must be used

to determine the stagnation-point velocity gradient. Boison and Curtiss
in reference 6 have correlated the experimental stagnation-point velocity
gradient measurements with a bluntness parameter based on body sonic-
point coordinates for a range of shapes from concave to an equivalent
hemisphere.

Presented in figure 2 are the experimental velocity gradient data
of reference 6. These data are correlated against the bluntness param-
eter xs/rS and are compared with Newtonian theory at a Mach number of
4.76. From these data it is seen that Newtonian theory can be used to
approximate (due/dx)X:O for bodies less blunt than those with

xs/rs > 0.35. The Mach 4.76 curve can be used to obtain a close approxi-
mation of the stagnation velocity gradient for any shape at hypersonic
speeds, neglecting real-gas effects.

*Ref. 2 concludes that the best value of Lewis number is approxi-
mately 1l.4.
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Stagnation line on a wing or control surface including effects of yaw
(n = 0). - From equations (7), (12), (17), (20), and (22), heating rate at
the stagnation line of a blunt two-dimensional leading edge for a Lewis
number other than 1.0 and a Pr of 0.71 is written as

0.44
- PoHo \7* due
9 = 0-706(5"——"'> Pyt (a;‘)

where a = 0.52 for thermodynamic equilibrium and 0.63 for frozen flow.
In order to correct for Pr other than O0.71, replace the constant 0.706
by 0.565 Pr-0-6

hp
[1 + (LS - 1) ﬁ;](ﬂe - h,) (25)

The velocity gradient for cylindrical leading edges is given by
equation (24). For leading edges having large radii of curvature or ir-
regular physical shapes, experimental pressure measurements should be
used to determine the velocity gradient.

For the stagnation line of a yawed wing or control surface with
Li = 1.0 and Pr = 0.71, the heating rate is given by

po“o 0.44 o
a4y p = 0.708( ——— (Pwotwo) ( ) ( - lgb (26)
0,A Puwoty A,x=0 aw, A

where
2
Ve,A )
Haw,A= He - (——?—) (l - -\/Pr

For a yawed circular cylinder the results of reference 7 presented in
figure 3 are used to determine the chordwise velocity gradient
(due/dx)A x=g+ If the leading edge cannot be treated as a circular

y X=

cylinder, experimental pressure data should be used to determine the cor-
rect velocity gradient.

The method for determining the various parameters required in addi-
tion to the velocity gradient is discussed in appendix B. It is very
important that the value of pp be determined by using the actual condi-
tions in the external flow at the stagnation line of the cylinder.

Three-dimensional flow near the stagnation point of a blunt three-
dimensional body. - By using equations (7), (12), (18), (20), and (22),
the heating rate at the stagnation point for three-dimensional flow is
written as

092-4
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X [1 + (LT - 1) %9](118 - b)) (27)

where o = 0.52 for thermodynamic equilibrium and 0.63 for frozen flow,
and Ry/R, is the ratio of the smaller to larger radius of curvature.
In order to correct for Pr other than 0.71, replace the constant 0.706
by 0.565 Pr-0.6,

The velocity gradient for the three-dimensional stagnation point is
obtained in the manner suggested in reference 5 and is given by

(dué) - 1 ’Z(Pwo - Pl) - (28)
dx X=O RX p 0

where R Lier principal radius of curvature.

BOUNDARY-LAYER FIOW WITH FAVORABLE PRESSURE GRADIENT
Tewis Number of Unity

The boundary-layer equations for the flow away from the stagnation
point of an axisymmetric blunt body in dissociated air have been treated
in detail by Kemp, Rose, and Detra in reference 1. The solutions of ref-
erence 1 are based on the assumptions of local similarity, Li = 1, and

LE = 0. The assumption of local similarity requires that the velocity
and enthalpy profiles remain similar (functions of 17 only), at least

for an appreciable distance along the body, thereby reducing the boundary-
layer equations to ordinary differential equations. Of course, the as-
sumption of local similarity will not be valid for the entire distance
away from the stagnation point. For example, some calculations made in
reference 1 indicate that on a hemisphere the assumption of local simi-
larity breaks down quite rapidly at angular positions greater than 60°.
Nevertheless, for most cases of interest the results presented here

should be adequate.

If the previous assumptions are used, the boundary-layer equations
from reference 1 are:
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Momentum equation:

(’Lf)+ff vp(=-s2) -0 (29)
) m TR\ - Tq)=

Energy equation:

(’gnﬁ;)n + g+ (—E—f—) [(1 - %)anf,rmjl =0 (30)
n

with the boundary conditions given in equation (ll).

The difference between equations (29) and (30) and the stagnation-
point equations is the inclusion of the dissipation factor ug/He (zero
at the stagnation point) and the evaluation of the fluid properties.
The fluid properties pe/p and pu/pepe depend. on the static enthalpy
h instead of the stagnation enthalpy g where the relation between g
and h 1is given by

2

h/He =8 - fq ZHg (31)
For most practical cases reference 1 has found that neglecting the dis-
sipation term ug/He and assuming the fluid properties to depend on g

only do not significantly modify the values of gn,w/(l - g;) for a given
value of B. .

Omission of the dissipation factor and evaluation of the fluid prop-
erties in terms of g only reduce equations (29) and (30) to the
stagnation-point equations with the proper value of the pressure-gradient
parameter B. Solution of these equations can be obtained from reference
1 where Kemp, Rose, and Detra found that [?n/(l - gw)] -0 can be corre-
lated in terms of the pressure-gradient parameter p and the stagnation
value of the pu ratio.

Values of [gn/(l - gw)] -0 required for heat-transfer calculation

(see below) are presented in figure 4 as a function of p.p pwouwo'

These values were obtained by fairing lines through the solutions of ref-
erence 1 for B = 0, 0.5, 1.0, and 2.0, Reference 1 also indicates that

200 _0.55 the value of (e, /(2 - gw)]q—o

within the range 0.15 < <
wokwo

can be approximated as

g PoMo 0.438
— = 0.458(1 + 0.096 — 32
<} - g;>n=o ( \/E)<pwo“wo) (s2)

092-2
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The relationship between [gn/(l - gWI]q—O and the heat-transfer param-

eter Nu/-\/ReW at any point on an axisymmetric or two-dimensional blunt
body can be expressed as

Nu x? VO X ( €y ) (He - by )
+/Rey B /2E 1-egy 0 Baw - by

A more detailed discussion of the preceding analysis is given in ref-
erence 1.

(33)

T‘:

Away from the stagnation line the effects of yaw have not been rig-
orously considered for the real-gas case. However, as a first approxi-
mation the following method of calculation is suggested. This method is
based on the assumptions of local similarity, h,/H, << 1, and correlation
of the values of [gn/(l - gw)] n=0 for a yawed two-dimensional body in

the same manner as for an unyawed body, provided the pp ratio is deter-
mined by using the actual external fluid properties on the yawed body.
It 1s iwplicd in the assumption of b /H, << 1 that the values of

gn/gn}o are sapproxi B

approximately true fo TW/TO = 0. These assumptions are completely un-
tested, and one would expect them to break down at least as rapidly as
the assumption of local similarity for an unyawed body. Assuming a cor-
relation of [gn/(l - gW)]n~O with the actual pu ratio of a yawed body

mately independent of yaw. From reference 4 this is
r

is Justified as a first approximation since reference 4 has found equa-
tion (17) to correlate successfully on the stagnation line of a yawed
body provided the external flow properties on the yawed body are used.

In the preceding paragraphs nc attempt has been made to include the
effect of a Lewis number other than 1.0 or a Prandtl number other than
0.71. However, for engineering purposes reference 1 found that a cor-
rection for Lewis number and Prandtl number applied at the stagnation
point is adequate over the entire body.

Calculation of Heat-Transfer Rate Around a Blunt
Body with Favorable Pressure Gradient
Flow around an axisymmetric blunt body (n = 1). - The heat-transfer

rate at any point around the body using equations (7) and (33) is given
by

puuUT [ g

W W e

0= 2 (D) (r - ) (54)
Pr-/2E W/n=0
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where [gn/(l - ng]n=0 can be obtained from figure 4 as a function of

pO“O/pwouwo and the pressure-gradient parameter p. Within the range
Poto

Pwokwo

0.15 < < 0.55 reference 1 indicates the following approximation:

¢ o . \0-438
— = 0.458(1 + 0.096 1/E)(———-p——o—-) (35)
- gw n_-_o P

The pressure-gradient parameter B 1is defined as

O o

or, for a very cold wall where p, = pe/RTw, the pressure-gradient param-
eter can be written as

(37)

For axisymmetric stagnation-point flow B = 0.5, and for two-dimensional
flow B = 1.0. A typical distribution of the local pressure-gradient
parameter on a hemisphere and a cylinder is shown in figure 5.

By using equations (12) and (34) the local heating rate to the
stagnation-point heating rate can be written as

P UT du -1/2
(E%)as i 2'\/E m\i(dxe)}{:()] <-g—7gf6)ﬂ=o (=°)

where the value of (gn/gn O)n o is obtained from figure 4.
f) =i

In the expression for (q/qo) no attempt has been made to include
as

the effect of a Lewis number other than 1.0 or a Prandtl number other
than 0.71. However, for engineering purposes reference 1 indicates that
a correction for Lewis number and Prandtl number applied at the stagna-
tion point should be adequate over the entire body.

At this point it would be interesting to compare equation (38) with
the results given by Lees in reference 8. §Since Lees assumes

092-d
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Pyt = Pglgr & comparison can be easily made, and Lees' expression for
(q/qO becomes
-1/2
Pytwlel (dué\
+ =
an - (Q/qO)a [ X_o (39)

2_\/— Ve WO WO

Comparing equations (38) and (39) gives

Heat, eq. (38) _ ( &y ) (40)

Heat, eq. (39) ~ &n,0/,,

The ratio of heating rate distribution presented in this report to
that of Lees (eq. (40)) is compared in figure 6 for both the axisymmetric
and two-dimensional case for various values of B and pouo/pWO WO It
is apparent from figure 6 that there is little error in Lees' method for

the range of pO“O/pwo“wo that will be encountered in practical cases.

T

However, as pointed out iu refcrences 1 and 2, the results of Lees
do yield some error at the stagnation point. This fTact is demonsiratcd
in figure 1 where the preseunt stag“u+1 n-point results are compared with
reference 8. Nevertheless, Lees' method is satisfactory for engineering
computations at the stagnation point.

Boundary-layer flow around leading edge of a wing or control surface
including effects of yaw (n = 0). - The heat-transfer rate at any point
around an unyawed blunt leading edge (L = 1.0, Pr = O. 71) is given by

PyHyle ( &y

TEE L 8w),,=o(He o e

where [gn/(l - gWY] can be obtained from figure 4 as a function of

pop.o/pwo wo and the pressure—gradlent parameter B. Within the range

0.15 < ——9—9— < 0.55 reference 1 indicates that [gn/(l - gw)] can
Pwottwo ~

be approximated by equation (35). The pressure-gradient parameter B is
defined by equation (36) and for a cold wall (no dissociation) reduces to

o - o(2) 4G

dx (Pe ) 2
———-—u
Pyo/ €

(42)

since k = Q.
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The ratio of the local heating rate to the heating rate at the stag-
nation point can be expressed as

Pte Ue -1/2
Izp = (5%) 2D VZE oyortug [(ZX ) x=0] <-g_7g]{lc—>>n=o (12)

where (gn/gn o) is obtained from figure 4. AltHough equation (43) is
J 1’]:

0
for Lj = 1.0 and Pr = 0.71, the corrections for Lewls number and
Prandtl number made at the stagnation line should be adequate for the
entire leading edge.

Since no real-gas solutions are available which have considered the
effects of yaw away from the stagnation line, the following method is
suggested. Assume that the values of gn/(l - g,) for a yawed surface
can be correlated in the same manner as for an unyawed surface. There-
fore, the ratio of heating rate at any point on the body to the stagna-
tion line of the yawed surface yields

-1/2
a, (pwuwAue’A [(due> ] /(g > (se)
ax
Go,0  V2E o, ), LT T Ax=0] - En,0/4,00

where (due/dx)A.xz is the chordwise line velocity gradient (see fig.
24

0

x
3), & =.4: (pwpw)A_ue,A.dx’ and the values of (gﬂ/gﬂ:O)A,n=O are ob-

tained from figure 4 using the value of B and (popo/p on the

wo“wo)A
yawed surface.

Once the pressure distribution is known around the yawed body, the
external flow properties can be found. According to reference 7, the
chordwise pressure distribution over a yawed circular cylinder can be
reasonably represented by

b - P
_E.Lj_\__—_}—- = COSZ(}—) (4:5)
Pyo,A = P1 Ry

For a noncircular yawed cylinder it would appear that a modified New-
tonian pressure distribution would be adequate to determine the heating
rates provided the correct chordwise velocity gradient is used at the
stagnation line. A further discussion of the flow properties on a yawed
surface is presented in appendix B.

09g-d
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FIOW WITH ZERO PRESSURE GRADIENT
Solutions for Case of a Dissociated Free Stream

Solutions for the laminar boundary layer with zero pressure gradient
including the case of a compressible dissociated free stream have been
presented in reference 9. A comparison of the reference enthalpy method
(ref. 10) with these exact solutions indicates agreement to within 6 per-
cent. Therefore, the reference enthalpy method can be recommended for
calculating the heating rates on zero yaw cones, cylinders, wedges, and
flat plates, for any flight conditions. However, the results presented
in this report do not consider the viscous-inviscid interaction phenomena
at the leading edge of wedges or flat plates, and, hence, the heat-
transfer results do not apply in the vicinity of the leading edge.

The only yawed bodies on which a zero pressure gradient is possible
are the flat plate, flat plate at angle of attack, and the wedge. The
flat plate has been treated in reference 11 where 1t has been shown that
the boundary layer is unaffected by yaw and the normal boundary-layer
sclutions apply in the vplanes containing the resultant stream velocity
vector. The yawed wedge and the yawed [lal plate at angle of attack,
however, will require further discussion since they are three-dimensicnal
problems.

Engineering Calculation of Heat-Transfer Rate
for Zero-Pressure-Gradient Flow
Flow on zero-pressure-gradient portion of a body. - On the cylin-
drical or conical portion of the body, the heating rates can be calcu-

lated for all flight conditions by simply using a reference enthalpy
method such as reference 10.

The heating rates on the cylindrical portion are identical to flat-
plate results for the same wetted distance. For the cone, however, the
heating rate is W/E times the flat-plate heating rate for the same wetted
distance. This difference can be easily shown by using the Mangler
transformation from the cone to the flat plate.

Flow on zero-pressure-gradient portion of a wing or control surface
including effects of yaw¥®¥* - On most typical hypersonic vehicles the
wing can be represented as a yawed flat plate, while the control surfaces
can be considered yawed flat plates or wedges.

*®*This analysis does not apply in the vicinity of the leading edge
where viscous-inviscid interaction phenomena occur.
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Calculation of heating rates on a flat plate, a yawed flat plate,
or an unyawed wedge is quite simple. A reference enthalpy method such
as Eckert's (ref. 10) will yield good answers when the theory is applied
along the streamwise coordinate.

However, the yawed-wedge-type control surface and the yawed flat
plate wing or control surface at angle of attack (windward side only)
cannot be treated exactly as in the preceding manner. Since they form
three-dimensional boundary-layer problems, the "independence principle"
(see ref. 11) indicates that the transverse momentum equation can be
ignored and that a two-dimensional boundary-layer solution such as that
of reference 10 should be applied along the coordinate normal to the
leading edge.

Consider the flow through the shock of a yawed wedge or flat plate
at angle of attack. In figures 7(a) and (b) the flow has been resolved
into components parallel and normal to the shock. A coordinate system
is set up such that x, is the distance normal to the leading edge,

Ue A is the component of velocity normal to the leading edge, and Ve, A

is the spanwise velocity component. Now, in order to use the method of
reference 10 the inviscid flow properties p and u must be

. WA e,A
determined.

Using figures 7(a) and (b) and reference 12 gives the following
expressions for ue,A. and pw,A:

Yawed wedge:
- 2 2
Yo AT Vug + w§ (46)
us, = Vy cos A cos(90° - 8) ten(0 - 8) (47)

tan @

wy = Vy cos A sin(90° - 6) (48)

Pu,A uz - 2\ <inZ6 4 1 (49)
pl = - n Yl 1 cos sin +

6 = 6(5,Vy cos A), see fig. 3 of ref. 12 (50)

Notice that both 6 and & are measured with reference to the yawed
flight velocity Vy; cos A. The wedge angle & should not be confused
with the root angle a. However, if the root angle is specified, then

sin & = sin a cos A (51)
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Yawed flat plate at angle of attack:

_ z 2

Ug A = VS F WS (46)

o tan(f - «') -
up = Vgpe cos(90° - @) o (52)
Wy = Vope sin(90° - ) (53)

Py A Y2 ) -
-Ei— = (} gy YlMgff sin®g + 1 (54)

6 = 6(a",Veopp), see fig. 3 of ref. 13
V

eff _
Mepr = 5 (55)
Vepr = V. 1/sin2m + cosfa cos@A (56)

where o 1s the angle of atitack of the vehicle and o' the eftective
flow deflection angle given by

cos a cos A (57)
1/1 - sinZq cosZA

cos o' =

Therefore, by writing the expression for the heating rate of refer-
ence 10 in terms of the flow properties along the coordinate normal to
the leading edge, the following is obtained:

D u
0 = 0.352 —=B (o) 230w (58)

where u, p 1s the velocity along xy, Pr* 1is the Prandtl number based
on the reference temperature, and the following expressions hold true:

* _ pszmo A
P = X ¥
Z'RT

*

u
_ P e,A?n




2z

* _ N
h™ = he A+ 0.5(h, - he A) + 0.22(hg,, - he’A)

2
u
h =g _ Ye,A
e A= He,n ™ T2

s g
He p = He - —5= (60)

v2 2

_ €,A T Ue A _ f‘?)
haW = He - > 1 Pr

pr* = Pr¥(T*) J

Once p is determined, the charts of reference 13 are helpful
. e 2 . P
in determining some of the preceding quantities.

CONCLUDING REMARKS

A summary of some of the available laminar theories for computing
heating rates on hypersonic vehicles has been presented. No attempt has
been made to be overly rigorous in the presentation of these results.
The engineering equations presented here, however, should enable one to
predict adequately the laminar heating rates encountered on hypersonic
vehicles.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 21, 1959
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APPENDIX A

FRACTION OF ENERGY IN DISSOCIATION

The fraction of energy in dissociation hD/He can be estimated by

using the results presented in reference 14. The stagnation enthalpy

He includes the energy of dissociation hpy in addition to the kinetic

energy. Therefore, the stagnation enthalpy can be expressed as

2 2
= Ue _ ue
He = ho + hp + = = he + =2 (A1)

and
h, = hy + hp (A2)

The enthalpy of the undissociated gas per unit mass can be approximated
as

~

G = oTe (A3)

where ¢ 1s the specific heat of the mixture. The fraction energy in
dissociation can then be approximated as

—_~_t__DE (A4)
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APPENDIX B

FLOW PROPERTIES ON A YAWED CYLINDER

In crder to calculate the heating rates at the stagnation line by
using equation (26), the values of v, A’ (Pwokwo)ps and (pouo)A must
be known. The coordinate system used {0 find the flow properties is

defined by the following sketch: b
00
3
Stagnation line *
4 Shock
ock wave
/
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where the x-coordinate is the distance along the cylinder surface meas-
ured in the chordwise direction from the leading edge. From the sketch
it is easily seen that the spanwise veloclty is represented as

vy = Vg p=VysinA (B1)

regardless of whether or not the fluid behaves as a perfect or real gas.

If the perfect-gas case is considered first, the determination of
(pwopwo)A and (pouo)A requires a knowledge of the pressure and tempera-

ture at the wall and in the external stream of the stagnation line. For
this case the results of reference 7 can be used.

The absolute viscosity § can be computed using the wall tempera-
ture and the external stream temperature T where, from reference 7,

O,A
Y1 -1
M2
To  tr M (52)
“~A Y 9 " >
e 1+ -L_,-\; M= cos®A
4 1

Since the density varies also with the pressure according to the eguation
of state, the static pressure must be determined from the inviscid flow.
When the chordwise component of the free-stream veloclty is supersonic,
the wall pressure at the stagnation line can be written as

T1 L

e

T+-1 T,-1
. T, + 1 1 Y + 1 1
wo,h (L M2 cosZA = (B3)
2 1 oy M2 2
11

%1 cos®A - (v - 1)

For subsonic chordwise flow,

T
Tl-l
P Yy - 1
ZWoh _ (} + —LTT—_ M% coszA> (B4)
151

For a real gas in thermodynamic equilibrium, the external stream
temperature TO A? the molecular weight ratio ZO,A’ and the pressure
pwo A must be ﬁnown to determine pp. In order to find the pressure

J
D A the following relations are required:
WO,
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b2 u
= =M cos?'A( - —-2->+ 1 (B5)
P u.
1 1
and
hy Ty -1 up)\2
L= L " M2 cogfAfl - (= + 1 (B6)
hy 2 1 Uy

where uz/ul can be found by using figure 2 of reference 12 and the nor-
mal Mach number Ml cos A (indicated as Ml sin 6 in ref. 12). Once
pp and hp are found, knowing the value of the external stream enthalpy
He,A’ the stagnation-line pressure pwo,A can be determined from the

charts of reference 13 by assuming constant entropy.

The external stream enthalpy He,A. is expressed as

2
v
=H -—= (B7)

He,A e 2

By knowing Pyo.A and Hqu, the charts of reference 13 can be used to
2 )
find ZO,A and TO,A' The density 1s then expressed as
o)

o = wo ,A"o
0,A
’ ZO,AsTO,A

and

_ Puo, A%
Pv =% RT
WO,AN W

Away from the stagnation line, equation (44) is used to calculate
the heating rates. In order to use this expression, the values of Py A
J

and ug A and the local value of B must be determined. All these flow

parameters can be easily found once the pressure distribution is pre-
scribed. By using modified Newtonian flow theory the pressure distribu-
tion is given by equation (45):

The pressure-gradient parameter f dis then defined as

_ o8 [ e,
-

NAT =T



H=-a0U

CN=-4 back

a7

where

X
§={.@mk%mw

or for very cold walls

X
Dy A
—d
. / (p A)ue’A dx
e ,A Y0 WO,

B=2—5 5 (B10)
e, A
Pyo,A) S
Once the pressure is known, the velocity Ug A and density p LA can
be found from the charts of reference 13 and the followling expressions:

_ DBy, Al
"w,A 7 _RT i
At
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Bluntness parameter, xs/rs

-point veloclty gradient plotted against body bluntness. (Data

from ref. 6.)

Figure 2. - Stagnation
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number, >10.
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